Effects of gait variations on grip force coordination during object transport.
نویسندگان
چکیده
In object transport during unimpeded locomotion, grip force is precisely timed and scaled to the regularly paced sinusoidal inertial force fluctuations. However, it is unknown whether this coupling is due to moment-to-moment predictions of upcoming inertial forces or a longer, generalized time estimate of regularly paced inertial forces generated during the normal gait cycle. Eight subjects transported a grip instrument during five walking conditions, four of which altered the gait cycle. The variations included changes in step length (taking a longer or shorter step) or stepping on and over a stable (predictable) or unstable (unpredictable support surface) obstacle within a series of baseline steps, which resulted in altered frequencies and magnitudes of the inertial forces exerted on the transported object. Except when stepping on the unstable obstacle, a tight temporal coupling between the grip and inertial forces was maintained across gait variations. Precision of this timing varied slightly within the time window for anticipatory grip force control possibly due to increased attention demands related to some of the step alterations. Furthermore, subjects anticipated variations in inertial force when the gait cycle was altered with increases or decreases in grip force, relative to the level of the inertial force peaks. Overall the maintenance of force coupling and scaling across predictable walking conditions suggests that the CNS is able to anticipate changes in inertial forces generated by gait variations and to efficiently predict the grip force needed to maintain object stability on a moment-to-moment basis.
منابع مشابه
Fingertip moisture is optimally modulated during object manipulation.
Coordination between the normal force exerted by fingers on a held object and the tangential constraints at the fingertips helps to successfully manipulate objects. It is well established that the minimal grip force required to prevent an object from slipping strongly depends on the frictional properties at the finger-object interface. Moreover, interindividual variation in the modulation of gr...
متن کاملProximal arm kinematics affect grip force-load force coordination.
During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during...
متن کاملActive Collisions in Altered Gravity Reveal Eye-Hand Coordination Strategies
Most object manipulation tasks involve a series of actions demarcated by mechanical contact events, and gaze is usually directed to the locations of these events as the task unfolds. Typically, gaze foveates the target 200 ms in advance of the contact. This strategy improves manual accuracy through visual feedback and the use of gaze-related signals to guide the hand/object. Many studies have i...
متن کاملEvidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
Grasp stability during object manipulation is achieved by the grip forces applied normal to the grasped surfaces increasing and decreasing in phase with increases and decreases of destabilizing load forces applied tangential to the grasped surfaces. This force coordination requires that the CNS anticipates the grip forces that match the requirements imposed by the self-generated load forces. He...
متن کاملCoupling of grip force and load force during arm movements with grasped objects.
Numerous studies have investigated the kinematics of arm movements; others have examined grip forces during static holding of objects. However, the coordination of grip force and arm movement when moving grasped objects has not been documented. We show that grip force is finely modulated in phase with load force during movements with grasped objects in which load force varies with acceleration....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 100 5 شماره
صفحات -
تاریخ انتشار 2008